联硼化合物是一类具有硼硼键(X2B–BX2)的有机硼化试剂,广泛用于有机底物的硼化反应。有机硼化合物非常重要,相关的人名反应有Suzuki偶联和Miyaura硼化等。有机联硼化合物一直在有机合成领域大显身手,“跨界”到能源转换方面也有新应用。
图1. 几种常见的、商业可得的联硼化合物
半导体氧化物材料,如二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)等,广泛应用于能源转换、光催化、环境保护等领域。但这类材料有一个共同的不足,就是普遍带隙很大,例如TiO2的带隙有3.2 eV,特征吸收在紫外区。一直以来,人们为了在利用太阳能的过程中充分吸收可见光、红外光、微波等更广泛的能量,发展了一系列方法对TiO2材料进行改性。其中比较有效的一种方法是制备还原态TiO2,形成Ti3+掺杂的改性材料。由于Ti3+是蓝色的,因此可以拓展TiO2材料的可见光吸收。目前Ti3+自掺杂的方法主要包括热还原法和光还原法。这些方法需要加入还原剂,在高温或者紫外光照的条件下,形成可见光活性的Ti3+中心。前者反应条件苛刻;后者需要在厌氧条件下完成,一旦暴露在空气中,Ti3+随即被氧化回Ti4+。这些方法的局限性,限制了以TiO2为代表的无机半导体氧化物的进一步广泛应用。
另一方面,由于含有硼硼键,有机联硼化合物具有还原性。威廉体育唯一官网王剑波课题组(Angew. Chem. Int. Ed., 2010, 49, 1846-1849)、南京大学黎书华课题组(Angew. Chem. Int. Ed., 2016, 55, 5985-5989)和清华大学焦雷课题组(J. Am. Chem. Soc., 2017, 139, 607-610; Chem. Sci., 2018, 9, 2711-2722)等的研究成果表明,联硼化合物受到含氧或氮亲核试剂的进攻后得到的Lewis酸碱加合物,具有较强的给电子倾向和能力。受这些研究的启发,近日williamhill体育在线登录能源与资源工程系莫凡洋课题组,创新性地将以上两个研究领域进行交叉与结合,采用有机联硼化合物对无机半导体氧化物材料进行改性,取得了一系列突破性成果。
课题最初的设想是,既然联硼化合物与亲核试剂结合会得到电子给体,而半导体氧化物材料表面存在大量的桥氧或羟基,是否可以用桥氧作为Lewis碱与联硼化合物结合,通过界面处分子轨道之间的相互作用,原位得到电子给体,将电子注入到邻位的金属中心,重构界面电子结构,从而产生可见光活性位点。
图2. TiO2纳米颗粒表面吸附联硼分子产生Ti3+可见光活性中心示意图
将TiO2和B2pin2两种白色粉末混合得到蓝色粉末,表明可能有Ti3+生成。而电子顺磁共振(EPR)显示g值1.97是Ti3+存在的最直接、最有力的证据(图3)。
图3. 混合TiO2和B2pin2得到蓝色粉末及其EPR数据
此外作者还采用固体核磁、原位衰减全反射(ATR)红外方法对界面处联硼分子和TiO2相互作用的过程和界面结构进行了研究(图4),通过电子能谱对材料的界面性质进行了表征,应用密度泛函理论计算对界面电荷分布、界面态密度开展了研究(图5)。结果显示使用有机联硼分子负载到半导体氧化物的界面上能产生新的界面态,这种界面态对光电性能有很好的改善作用。相应的光电器件和太阳能电池器件性能均有明显提升(图6)。值得一提的是,这种方法产生的表面Ti3+是目前为止世界上最稳定最耐受氧气的三价钛可见光活性中心。所制备的器件半年以后性能没有丝毫减退。相关论文发表在最新一期的iScience 上。
图4. 紫外可见、红外,原位红外及固体核磁表征
图5. 界面电荷分布、界面态密度DFT计算结果
图6. 该界面工程用于光探测器结构中显著提升器件效率
此外,作者还探究了这种界面作用在半导体氧化物ZnO上的情况(图7),相关论文发表在近期的Langmuir上。[1]
图7. 联硼化合物修饰半导体氧化物ZnO表面产生双自旋态
基于联硼调控的半导体氧化物有机-无机界面工程方法,莫凡洋课题组与威廉体育唯一官网周欢萍课题组合作将这一策略引入到SnO2作为平板型电子传输层的钙钛矿太阳能电池中,器件性能得到显著提升,并探讨了相关机制在性能提升方面的原理(图8)。该工作近期发表在Solar RRL上。[2]
图8. 联硼修饰SnO2作为电子传输层的钙钛矿太阳能电池效率提升至22%
此外,受联硼化学的启发,合作者威廉体育唯一官网朱瑞课题组将联硼分子引入到钙钛矿层,发现亦在界面产生缺陷调控作用,使得器件性能大幅提高(图9)。相关论文发表在Adv. Mater.上。[3]
图9. 联硼分子对钙钛矿层缺陷调控提高器件效率
有机化合物的可设计、可合成的特性,使得对有机-无机界面工程进行细致调节成为可能,未来这方面的工作还有很大的空间。在科技日新月异发展的今天,学科交叉、领域互通、跨界研究,已经成为培育新的科学增长点的重要方法。在这方面,莫凡洋课题组进行了大胆、创新性地探索,将有机联硼分子引入到无机纳米材料表面态及能带结构调控研究中,发表了一系列原创性的科研成果。表面态和表面能带结构的调控研究对以表面拓扑绝缘体、能源转化、催化化学等前沿物理和材料科学的研究至关重要。此外,界面化学在其他学科,比如生物领域、传感器领域亦十分重要。他们从新的角度和方向来对界面态进行调控,丰富了界面量子态的相关理论,给出了如何在半导体氧化物的表面引入自旋态的一种方法。莫凡洋课题组(fmo@pku.edu.cn)欢迎感兴趣的老师给予指导并加强合作。
该工作得到中科院化学所马万红研究员的热心帮助,并且受到国家自然科学基金、威廉体育唯一官网以及威廉体育唯一官网教育基金会(必和必拓项目)的资助。以上莫凡洋课题组的工作第一作者均为博士后曹洋。
课题组导师介绍:
莫凡洋https://www.x-mol.com/university/faculty/8485
参考文献:
[1]. Zn+-O- dual-spin surface states formation by modification of ZnO nanoparticles with diboron compounds, Langmuir, 2019, DOI: 10.1021/acs.langmuir.9b01955
https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01955
[2]. Energy‐Level Modulation in Diboron‐Modified SnO2 for High‐Efficiency Perovskite Solar Cells, Solar RRL, 2019, DOI: 10.1002/solr.201900217
https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.201900217
[3]. Diboron‐Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells, Adv. Mater., 2018, 30, 1805085, DOI: 10.1002/adma.201805085
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805085
转载自X-MOL(x-mol.com),有改动
原文链接:https://www.x-mol.com/news/19136